Mean Confidence Interval

Estimating Parameters and

Mean Confidence Interval

What is a **Parameter**?

Parameter is any numerical measurement related to a population.

Here are some common parameters:

- Population Proportion p
- Population Mean μ
- Population Standard Deviation σ

What do we need to start the **Estimation** process?

We must have a randomly selected sample from the population that has the correct point-estimate.

What is a **Point-Estimate**?

In statistic, the **Point-Estimate** is an **Estimator** of some **Parameter** of the population.

Point-Estimate is calculated from the sample data and it is served as a the **Best-Guess** for our estimation of the parameter.

What is a **Confidence Interval**?

In statistics, a **Confidence Interval** is a range of values computed from the statistics of the observed data, that might contain the true value of a population parameter.

Every Confidence Interval comes with a Confidence Level.

What is a **Confidence Level**?

Confidence Level represents the probability that the true parameter lies within the confidence interval.

Confidence Level is usually expressed as a percentage.

Here are some common confidence levels:

- ▶ 90%
- ▶ 95%
- ▶ 99%

Important information about **Confidence Levels**:

• When confidence level is not given, use 95%.

Mean Confidence Interval

Confidence Level vs. **Significance Levels** Chart:

Confidence Level	Significance Level
90%	lpha= 0.1
95%	lpha= 0.5
99%	lpha= 0.01
$(1-lpha)\cdot 100\%$	lpha, 0 < $lpha$ < 1

Confidence Level vs. **Significance Level** Display:

Mean Confidence Interval

Confidence Interval for Population Mean:

- Final Answer:
- General Format:
- Sample Mean:

$$\cdots < \mu < \cdots$$

$$\bar{x} - E < \mu < \bar{x} + E$$

$$\bar{x} = rac{\sum x}{n}$$
 with sample size n

Critical Value & Margin of Error:

Case I:	σ	known	Case II:	σ unknown
CV: $Z_{\alpha/2}$			CV: $t_{lpha/2}$	with $df=n-1$
Error: $E =$	$Z_{lpha/2}$	$\cdot \frac{\sigma}{\sqrt{n}}$	Error: E =	$= t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$

In a survey of 54 students in college, their mean age was 32.3 years. It is known that standard deviation of ages of all college students is 8.9 years.

- Identify all information provided, using mathematical symbols.
- Find the critical value for constructing the 98% confidence interval for the mean age of all college students.
- Find the margin of error when constructing a 98% confidence interval for the mean age of all college students.
- Find the 98% confidence interval for the mean age of all college students.

Elementary Statistics

Mean Confidence Interval

Solution:

- Identify all information provided, using mathematical symbols.
 - n = 54, $\bar{x} = 32.3$, and $\sigma = 8.9$.
- Find the critical value for constructing the 98% confidence interval for the mean age of all college students.

Since we know σ , we are in case I.

$$Z_{0.05} = invNorm(0.99, 0, 1) = 2.326$$

Find the margin of error when constructing a 98% confidence interval for the mean age of all college students.

Using case I with n= 54, $\sigma=$ 8.9, and $Z_{\alpha/2}=$ 2.326, we get

$$E = Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} = 2.326 \cdot \frac{8.9}{\sqrt{54}} \approx 2.8$$

Find the 98% confidence interval for the mean age of all college students.

With $\bar{x} = 32.3$, $\bar{x} - E < \mu < \bar{x} + E$ $32.3 - 2.8 < \mu < 32.3 + 2.8$ $29.5 < \mu < 35.1$

In a survey of 12 students in college, they had a mean monthly income of \$1650 with standard deviation of \$250.

- Identify all information provided, using mathematical symbols.
- Find the critical value for constructing the 94% confidence interval for the mean monthly income of all college students.
- Find the margin of error when constructing a 94% confidence interval for the mean monthly of all college students.
- Find the 94% confidence interval for the mean monthly of all college students.

Elementary Statistics

Mean Confidence Interval

Solution:

Identify all information provided, using mathematical symbols. n = 12, x̄ = 1650, and s = 250. it is worth nothing that population standard deviation σ is unknown.

Find the critical value for constructing the 94% confidence interval for the mean monthly income of all college students.

Since we do not know σ , we are in case II with df = n - 1 = 12 - 1 = 11

 $t_{0.03} = invT(0.97, 11) = 2.096$

Find the margin of error when constructing a 94% confidence interval for the mean monthly of all college students.

Using case II with n=12, s=250, and $t_{lpha/2}=2.098$, we get

$$E = t_{\alpha/2} \cdot \frac{s}{\sqrt{n}} = 2.098 \cdot \frac{250}{\sqrt{12}} \approx 151$$

Find the 98% confidence interval for the mean monthly income of all college students.

With $\bar{x} = 32.3$, $\bar{x} - E < \mu < \bar{x} + E$ $1650 - 151 < \mu < 1650 + 151$ $1499 < \mu < 1801$

Finding \bar{x} & E from Confidence Interval:

Given the confidence interval ${f Lower} < \mu < {f Upper}$, then

•
$$\bar{x} = \frac{\text{Upper Value + Lower Value}}{2}$$

• $E = \frac{\text{Upper Value - Lower Value}}{2}$

Here are the steps on TI when constructing confidence interval for population proportion:

- STAT
- TESTS
- ZInterval when σ is known
- TInterval when σ is unknown

Pay close attention to the following:

- ▶ When confidence level is not given, use 95%.
- Always round your final answer to consistent with \bar{x} , and use mathematical notation to display your final answer.

In a sample of 40 textbooks at the college bookstore, the mean price was \$89.75. It is also reported that the standard deviation of prices of all textbooks is \$22.65.

- Identify all information provided, using mathematical symbols.
- Find the confidence interval for the mean price of all textbooks.
- Find the margin of error.

Solution:

► Identify all information provided, using mathematical symbols. $n = 40, \bar{x} = 89.75, \sigma = 22.65$

Find the confidence interval for the mean price of all textbooks.

Since we have σ , we would use **ZInterval** for constructing confidence interval, and since the confidence level is not given, we use 95% confidence level.

Following the TI commands **STAT** >**TESTS** > **ZInterval** with $\bar{x} = 89.75$, n = 40, $\sigma = 22.65$, and **C-Level:** 0.95, we get

 $82.73 < \mu < 96.77$

Find the margin of error.

$$E = \frac{\text{Upper Value} - \text{Lower Value}}{2} = \frac{96.77 - 82.73}{2} = 7.02$$

Scores of 10 randomly selected exams had the following scores. 78 83 90 65 100 95 58 80 72 70

- Find the mean and standard deviation of these randomly selected exams. Round your final answer to a whole number.
- Find the 99% confidence interval for the mean of all such exams.
- Find the margin of error.

Solution:

Find the 99% confidence interval for the mean of all such exams.

Since we do not know σ , we would use **Tinterval** for constructing confidence interval. Following the TI commands **STAT** >**TESTS** > **Tinterval** with $\bar{x} = 79$, n = 10, s = 13, and **C-Level:** 0.99, we get

$$66 < \mu < 92$$

Find the margin of error.

$$E = \frac{\text{Upper Value} - \text{Lower Value}}{2} = \frac{92 - 66}{2} = 13$$